A despecialization step underlying evolution of a family of serine proteases.
نویسندگان
چکیده
In the trypsin superfamily of serine proteases, non-trypsin-like primary specificities have arisen in only two monophyletic descendent subbranches. We have recreated an ancestor to one of these subbranches (granzyme) using phylogenetic inference, gene synthesis, and protein expression. This ancestor has two unusual properties. First, it has broad primary specificity encompassing the entire repertoire of novel primary specificities found in its descendents. Second, unlike extant members that have narrow primary specificities, the ancestor exhibits tolerance to mutational changes in primary specificity-conferring residues-that is, structural plasticity. Molecular modeling and mutagenesis studies indicate that these unusual properties are due to a particularly wide substrate binding pocket. These two crucial properties of the ancestor not only distinguish it from its extant descendents but also from the trypsin-like proteases that preceded it. This indicates that a despecialization step, characterized by broad specificity and structural plasticity, underlies evolution of new primary specificities in this protease superfamily.
منابع مشابه
Detection of the Keratinolytic Activity of Agriculture and Mount Barker Strain Dermatophilus congolensis Serine Proteases.
متن کامل
Isolation and Characterization of Thermophilic Alkaline Proteases Resistant to Sodium Dodecyl Sulfate and Ethylene Diamine Tetraacetic Acid from Bacillus sp. GUS1
Thermophilic Bacillus sp. GUS1, isolated from a soil sample obtained from citrus garden, produced at least three proteases as detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. The enzymes were stable in the alkaline pH range (8.0-12.0), with the optimum temperature and pH range of the proteases being 70ºC and 6.0-12.0, respectively. All th...
متن کاملOn the origins of esterases.
Comparisons among the primary sequences of five cloned eukaryotic esterases reveal two distinct lineages, neither bearing any significant overall sequence similarity to the functionally related serine protease multigene family. We have not eliminated the possibility that the esterases may have residual conformational similarities to the serine proteases. However, our profile analysis and analys...
متن کاملIndependent subtilases expansions in fungi associated with animals.
Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate t...
متن کاملSubstrate recognition drives the evolution of serine proteases.
A method is introduced to identify amino acid residues that dictate the functional diversity acquired during evolution in a protein family. Using over 80 enzymes of the chymotrypsin family, we demonstrate that the general organization of the phylogenetic tree and its functional branch points are fully accounted for by a limited number of residues that cluster around the active site of the prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2003